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Abstract 
 

Within many domains, among which biological and 
cognitive areas, multiple interacting processes occur 
among agents with dynamics that are hard to handle. 
Current approaches to analyse the dynamics of such 
processes, often based on differential equations, are not 
always successful. As an alternative to differential 
equations, this paper presents the predicate logical 
Temporal Trace Language (TTL) for the formal 
specification and analysis of dynamic properties. This 
language supports the specification of both qualitative 
and quantitative aspects, and therefore subsumes 
specification languages based on differential equations. A 
software environment has been developed for TTL, that 
supports editing TTL properties and enables the formal 
verification of properties against a set of traces. The TTL 
environment proved its value in a number of projects 
within different domains. 
 

1. Introduction 
 
In domains such as Biology and Cognitive Science, the 

dynamics of the multiple interacting processes among 
different agents involved poses modelling challenges. 
Currently, differential equations are among the techniques 
most often used to address this challenge, with partial 
success. For example, in the area of intracellular 
processes, hundreds or more reaction parameters (for 
which reliable values are rarely available) are needed to 
model the processes in question. Thus, describing these 
processes in terms of differential equations can seriously 
compromise the feasibility of the model. Likewise, in the 
area of Cognitive Science, the Dynamical Systems Theory 
that is also based on differential equations (DST, see e.g., 
[21]), is well practiced and successful. However, the 
models typically only address lower-level agent cognitive 
processes such as sensory or motor processing. DST has 
less to offer for modelling the dynamics of higher-level 
processes with a mainly qualitative character, such as 

agent reasoning, complex task performance, and certain 
capabilities of language processing. 

For formal qualitative modelling of processes at a high 
level of abstraction, logic-based methods have proved 
useful. For example, variants of modal temporal logic [2, 
12, 14, 19, 24] gained popularity in agent technology. 
However, many of the logic-based methods lack the 
quantitative expressivity, needed, e.g., for modelling 
processes for which precise timing relations play an 
essential role (e.g., biological and chemical processes). 

Thus, within several disciplines the need exists for 
general modelling and analysis techniques capable to deal 
with complex agent systems that comprise both 
quantitative and qualitative aspects. This paper introduces 
the Temporal Trace Language (TTL) as such a technique 
for the analysis of dynamic properties within complex 
domains, and especially, for the cognitive domain. In 
Section 2, a novel perspective is put forward for the 
development of such a technique, based on the idea of 
checking dynamic properties on given sets of traces. 
Section 3 shows how dynamics of an agent system can be 
modelled using the TTL language. Examples of the 
application of TTL are presented in Section 4. Section 5 
describes the tools that support the TTL modelling 
environment in detail. In particular, the TTL Property 
Editor and the TTL Checker Tool are discussed. Section 6 
is a conclusion. 

 

2. Perspective of this Paper 
 
As follows from the discussion above, the demands for 

dynamic modelling and analysis approaches suitable for 
specifying agent systems in natural domains are nontrivial. 
In particular, the possibility of both discrete and 
continuous modelling of a system at different aggregation 
levels is demanded. Furthermore, numerical expressivity 
is required for modelling systems with explicitly defined 
quantitative relations best presented by difference or 
differential equations. Moreover, for specifying 
qualitative aspects of a system, modelling languages 
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should be able to express logical relationships between 
parts of a system.  

Desiderata for analysis techniques include both the 
generation and formalisation of simulated and empirical 
trajectories or traces, as well as analysis of complex 
dynamic properties of such traces and relationships 
between such properties. A trace as used here represents a 
temporally ordered sequence of states of an agent system. 
Each state is characterised by a number of state properties 
that hold. Simulated traces may be obtained by performing 
simulations based on both quantitative (or continuous) and 
qualitative (or discrete) variables. 

Taken together, the desiderata for modelling languages 
and analysis techniques described above are not easy to 
fulfil. On the one hand, high expressivity is desired, on the 
other hand feasible analysis techniques are demanded. To 
provide automated support for these analyses the 
expressivity of the modelling language can be limited, 
thereby compromising the desiderata for modelling 
languages. For example, the expressivity may be limited 
to difference and differential equations as in DST 
(excluding logical relationships), or to propositional 
modal temporal logics (excluding numerical 
relationships). In the former case, calculus can be 
exploited to do simulation and analysis based on 
continuous variables only [21]. In the latter case, 
simulation is based on a specific logical executable 
format, which does not allow expressions involving 
continuous variables (e.g., executable temporal logic [2]). 
Another possibility is to use a number of dedicated formal 
languages with limited expressiveness and related to them 
analysis techniques for checking different particular static 
and dynamic aspects of a system (e.g., structural 
consistency of a model, dynamic aspects of execution), as 
proposed in the methodology for the development of 
correct software KORSO [11]. The languages used in this 
project describe different formats of system specifications, 
relations between them (e.g., by refinement based on 
proof obligations) and the temporal development of these 
specifications for all phases of the software life cycle. 
However, in order to guarantee the overall correctness of 
a system some properties are required to be expressed 
using more than one language with different types of 
semantics. Thus, the problem of verification across 
different not related proof systems arises that is not 
addressed in this project. 

The problem of checking relationships between 
dynamic properties of a system, identified above as one of 
the desiderata for analysis techniques, is essentially the 
problem of justifying entailment relations between sets of 
properties defined at different aggregation levels of a 
system’s representation. In general, entailment relations 
can be established either by logical proof procedures or by 
checking properties of a higher aggregation level on the 
set of all theoretically possible traces generated by 

executing a system specification that consists of properties 
of a lower aggregation level (i.e., by performing model 
checking [12, 19, 24]). To make it feasible to check 
relationships between dynamic properties, expressivity of 
the language for these properties has to be sacrificed to a 
large extent. However, checking properties on a given set 
of traces of practical size (instead of all theoretically 
possible ones), obtained empirically or by simulation, is 
computationally much cheaper. Therefore, in that case the 
language for these properties can be more expressive, 
such as the sorted predicate logic temporal trace language 
TTL described in this paper. TTL fulfils all of the 
identified above desiderata for modelling languages and 
can be used both for formalisation of empirical and 
simulated traces and for analysis of properties on traces. 
Although TTL cannot be used to generate traces by 
simulation, an executable sublanguage of TTL, such as 
LEADSTO, cf. [6], may be defined for this purpose. 
Moreover, decidable fragments of TTL may be defined 
for the analysis of relationships between dynamic 
properties of a system.  

Finally, having a language for simulation and 
languages for analysis within one subsuming language 
also opens the possibility of having a declarative 
specification of a simulation model, and thus to involve 
simulation models in logical analyses. 

 

3. A Language to Model Agent Behaviour 
 
The Temporal Trace Language (TTL) presented here is 

developed from the assumption that the dynamics of an 
agent system can be described as evolution of states of 
agents and an environment over time, as for modal 
temporal logics, see e.g., [2, 12, 14, 19, 24]. TTL has 
some similarities with situation calculus, see [22] and 
event calculus, see [16]. Time in TTL is assumed to be 
linearly ordered and depending on the application, it may 
be dense (e.g., the real numbers), or discrete (e.g., the set 
of integers or natural numbers or a finite initial segment of 
the natural numbers), or any other form with a linear 
ordering. An agent interacts with a dynamic environment 
via its input and output (interface) states. At its input the 
agent receives observations from the environment whereas 
at its output it generates actions that can change a state of 
the environment. 

An agent state at a certain point in time as used here is 
an indication of which of the state properties of the agent 
and its environment (e.g., observations and actions) are 
true (hold) at that time point. For specifying state 
properties for the input, output, internal, and external 
states of an agent A, ontologies, named IntOnt(A), InOnt(A),  
OutOnt(A), and ExtOnt(A) respectively, are used which are 
specified by a number of sorts, sorted constants, variables, 
functions and predicates (i.e., a signature). State 
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properties are specified using a standard multi-sorted first-
order predicate language based on such ontologies. For 
example, a state property expressed as a predicate pain 
may belong to IntOnt(A), whereas the atom 
has_temperature(environment, 7) may belong to ExtOnt(A). 

To characterize the dynamics of the agent and the 
environment, dynamic properties relate properties of 
states at certain points in time.  

To enable reasoning about the dynamic properties of 
arbitrary systems the language TTL includes special sorts, 
such as: TIME (a set of linearly ordered time points), 
STATE (a set of all state names of an agent system), 
TRACE (a set of all trace names; a trace or a trajectory can 
be thought of as a timeline with for each time point a 
state), and STATPROP (a set of all state property names). 
Throughout the paper, variables such as t, t1, t2, t’, t” stand 
for variables of the sort TIME; and variables such as g, g1, 

g2 stand for variables of the sort TRACE. 
A state of an agent is related to a state property via the 

satisfaction relation |== formally defined as a binary infix 
predicate (or by holds as a binary prefix predicate in the 
software environment). For example, “in the output state of 
agent A in trace g 

���
at time t property p holds” is formalized by 

state(g , t, output(A)) |== p. If the indication of an agent aspect 
is not essential, the third argument is left out: state(g, t) |== p.  

Both state(g , t, output(A)) and p are terms of the TTL 
language. TTL terms are constructed by induction in a 
standard way for sorted predicate logic from variables, 
constants and functional symbols typed with TTL sorts. 
Dynamic properties are expressed by TTL-formulae 
inductively defined by: 
(1) If v1 is a term of sort STATE, and u1 is a term of the sort 

STATPROP, then holds(v1, u1) is an atomic TTL formula. 
(2) If t1, t2 are terms of any TTL sort, then t1 = t2 is an atomic 

TTL formula.  
(3) If t1, t2 are terms of sort TIME, then t1 < t2 is an atomic TTL 

formula.  
(4) The set of well-formed TTL-formulae is defined inductively 

in a standard way based on atomic TTL-formulae using 
boolean propositional connectives and quantifiers.  

For example, the dynamic property 

‘in any trace g, if at any point in time t1 agent A observes 
that it is dark in the room, whereas earlier a light was on in 
this room, then there exists a point in time t2 after t1 such 
that at t2 in the trace g agent A switches on a lamp’ 

is expressed in formalized form as: 
    "t1 [ [ state(g, t1, input(A))  |== observed(dark_in_room) & 
    $t0<t1 [ state(g, t0, input(A))  |== observed(light_on)] 
     �   $t2 ‡ t1 state(g, t2, output(A)) |== performing_action(switch_on_light) ]  
 

As TTL uses order-sorted predicate logic as a point of 
departure, it inherits the standard semantics of this variant 
of predicate logic. That is, the semantics of TTL is 
defined in a standard way, by interpretation of sorts, 
constants, functions and predicates, and a variable 

assignment. However, in addition the semantics involves 
some specialised aspects. As a number of standard sorts 
are present, the elements of these sorts are limited to 
instances of specified terms in these sorts, as is usual, for 
example, in logic programming semantics. For example, 
for the sort TIME it is assumed that in its semantics its 
elements consist of the time points of the fixed time frame 
chosen. Moreover, for the sort TRACE, it is assumed that 
in its semantics its elements consists of a (limited) number 
of elements named by constants. Furthermore, for the sort 
STATPROP for state properties it is assumed that in its 
semantics its elements consist of the set of terms denoting 
the propositions built in a chosen state language (this is 
called reification). A full description of the technical 
details of TTL's semantics is beyond the scope of the 
current paper. For this purpose, see [23]. 

By executing dynamic properties traces can be 
generated and visualised, for example as in Figure 1. 
Here, the time frame is depicted on the horizontal axis. 
The names of predicates are shown on the vertical axis. A 
dark box on top of the line indicates that the predicate is 
true during that time period.  

 
input(A)|observed(light_on)

input(A)|observed(dark_in_room)
output(A)|performing_action(switch_on_lamp)

time 0 0.5 1 1.5 2 2.5 3 3.5  
 

Figure 1. Example visualisation of a trace 
 

4. Application Areas 
 
The TTL language and its supporting software 

environment have been applied in research projects 
addressing different topics in cognitive domains, such as 
human reasoning, conditioning, consciousness, 
psychotherapy, and philosophy of mind. The main 
research goal in these projects was to analyse the 
behavioural dynamics of the agents involved (e.g., [5, 7, 
8, 9, 10]). TTL was used to formalise dynamic properties 
of these processes at a high level of abstraction. Next, 
such properties were automatically checked against 
simulated or empirical traces. Examples of the application 
of TTL in different areas are presented in this section.  

 
4.1 Modelling and Analysis of Hybrid Systems  

 
Hybrid systems incorporate both continuous and 

discrete components. The dynamics of the former can be 
described by differential equations, those of the latter can 
be represented by finite-state automata. Both continuous 
and discrete dynamics of components influence each 
other. In particular, the input to the continuous dynamics 
is the result of some function of the discrete state of a 
system; whereas the input of the discrete dynamics is 
determined by the value of the continuous state.  
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A modelling method for hybrid systems should be 
capable of expressing both quantitative and qualitative 
properties of the system and integrating them into one 
model. TTL satisfies this requirement. Systems of 
differential equations can be expressed in TTL using 
discrete or dense time frames. As an example, Euler’s 
method, see [20], for solving differential equations is 
modelled in TTL. Euler’s method approximates a 
differential equation dy/dt = f(y) with the initial condition 

y(t0)=y0  by a difference equation yi+1=yi+h*f(yi) (i‡0 is the step 
number and h>0 is the integration step size). This equation 
can be modelled in TTL in the following way: 

"g "t "v: LVALUEGTERMS state(g , t) |== has_value(y, v)     �  

state(g , t+1) |== has_value(y, v + h • f(v)) 

States specify the respective values of y at different time 
points and the difference equation is modelled by a 
transition rule from the current to the successive state. The 
traces g satisfying the above dynamic property are the 
solutions of the difference equation. More precise and 
stable numerical approximation methods (e.g., Runge-
Kutta, dynamic step size, see [20]) can be expressed in 
TTL in a similar manner.  

 
4.2 Analysis of Trace Conditioning in TTL 

 
The example given in this section is taken from [5]. In 

that paper, TTL is used to analyse the temporal dynamics 
of trace conditioning. In general, research into 
conditioning is aimed at revealing the principles that 
govern associative learning. An important issue in 
conditioning processes is the adaptive timing of the 
conditioned response to the appearance of the 
unconditioned stimulus. This feature is most apparent in 
an experimental procedure called trace conditioning. In 
this procedure, a trial starts with the presentation of a 
warning stimulus (S1, comparable to a conditioned 
stimulus). After a blank interval, called the foreperiod, an 
imperative stimulus (S2, comparable to an unconditioned 
stimulus) is presented to which the participant responds as 
fast as possible. The reaction time to S2 is used as an 
estimate of the conditioned state of preparation at the 
moment S2 is presented. In this case, the conditioned 
response obtains its maximal strength, here called peak 
level, at a moment in time, called peak time, that closely 
corresponds to the moment the unconditioned stimulus 
occurs.  

Machado [18] developed a basic model that describes 
the dynamics of these conditioning processes in terms of 
differential equations. The structure of this model is 
shown in Figure 2. The model posits a layer of timing 
nodes and a single preparation node. Each timing node is 
connected both to the next (and previous) timing node and 
to the preparation node. The connection between each 
timing node and the preparation node (called associative 

link) has an adjustable weight associated to it. Upon the 
presentation of a warning stimulus, a cascade of activation 
propagates through the timing nodes according to a 
regular pattern. Owing to this regularity, the timing nodes 
can be likened to an internal clock or pacemaker. At any 
moment, each timing node contributes to the activation of 
the preparation node in accordance with its activation and 
its corresponding weight. The activation of the 
preparation node reflects the participant's preparatory 
state, and is as such related to reaction time. The weights 
reflect the state of conditioning, and are adjusted by 
learning rules, of which the main principles are as follows. 
First, during the foreperiod extinction takes place, which 
involves the decrease of weights in real time in proportion 
to the activation of their corresponding timing nodes. 
Second, after the presentation of the imperative stimulus a 
process of reinforcement takes over, which involves an 
increase of the weights in accordance with the current 
activation of their timing nodes, to preserve the 
importance of the imperative moment. Machado describes 
the more detailed dynamics of the process by a 
mathematical model (based on linear differential 
equations), representing the (local) temporal relationships 
between the variables involved. For example, 

dX(t,n)/dt = lX(t,n-1) - lX(t,n) 
expresses how the activation level of the n-th timing node 
X(t+dt,n) at time point t+dt relates to this level X(t,n) at time 
point t and the activation level X(t,n-1) of the (n-1)-th 
timing node at time point t. Similarly, as another example, 

dW(t,n)/dt = -aX(t,n)W(t,n) 
relates the n-th weight W(t+dt,n) at time point t+dt to this 
weight W(t,n) at time point t and the activation level X(t,n) 

of the n-th timing node at time point t. 
 
 
 
 

 

 

 

 
Figure 2. Structure of Machado’s conditioning model. 

 
In [5], a number of dynamic properties relevant for 

trace conditioning have been formalised in TTL. These 
properties were taken from the existing literature on 
conditioning, such as [17], in which they were mainly 
expressed informally. TTL turned out useful to express 
these properties in a formal manner. An example of such a 
property (taken from [17], p.372) is given below, both in 
informal, semi-formal and in formal notation: 

S1 

Timing nodes with 
activation level X 
 
 
Associative links of 
variable weight W 
 
 
Preparation node 
 
 
Response strength R 
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Global Hill Preparation 
Informal: ‘The state of conditioning implicates an increase and 
decay of response-related activation as a critical moment is 
bypassed in time’. 
Semi-formal: ‘In trace g, if at t1 a stimulus s1 starts, then the 
preparation level will increase from t1 until t2 and decrease from 
t2 until t1 + u, under the assumption that no stimulus occurs too 
soon (within u time) after t1.’ Formally: 
 

has_global_hill_prep(g:TRACE, t1,t2:TIME, u:INTEGER) 
�

 
"t’,t”:TIME "p’,p”:REAL  
[ state(g, t1) |== stimulus_occurs  & 
Ø stimulus_starts_within(g, t1, t1+u)  & 
state(g, t’) |== preparation_level(p’)  & 
state(g, t”) |== preparation_level(p”)    
�  [t1 £ t’ < t” £ t2  &  t” £ t1 + u  �   p’ < p” ]  & 
      [t2 £ t’ < t” £ t1 + u                 �   p’ > p” ] ] 

 

Here, stimulus_starts_within is defined as follows: 
 

stimulus_starts_within(g:TRACE, t1,t2:TIME) 
�
 

$t:TIME [ state(g, t) |== stimulus_occurs  & t1 < t < t2 ] 
 

These (and various similar) properties were automatically 
verified using the TTL checker tool  against a number of 
(empirical and simulation) traces. Among these properties 
were also properties that compare different traces, such as: 
‘the conditioned response takes more time to build up and decay and its 
corresponding asymptotic value is lower when its corresponding critical 
moment is more remote from the warning signal.’ (cf. [17]) 

Such properties cannot be expressed, for example, in 
modal temporal logics, just like familiar properties such as 
‘exercise improves skill’, expressing that the more 
intensive a training history, e.g., of an athlete, the better 
the skill will be. 

 
4.3  Application of TTL in Other Areas 

 
Besides the conditioning area, TTL has been applied in 

many other domains as well. In order to give a 
representative overview in limited space, below a number 
of TTL formulae used in other domains are presented 
(both in informal and formal notation): 

 
Proper Rejection Grounding 
From the domain of human reasoning [10]: 
‘In any trace g, if an assumption is rejected, then earlier on there 
was a prediction for it that did not match the corresponding 
observation result’.  
 

"t "A:INFO_EL "S1:SIGN 
     state(g, t) |== rejected(A,S1) �  
          [ $t’:TIME $B:INFO_EL $S2,S3:SIGN 

state(g, t’) |== prediction_for(B, S2, A, S1) & 
state(g, t’) |== observation_result(B, S3) & 
S2 

�
 S3 & t’ £ t1 ] 

 
Representational Content of c 
From a paper about representational content (cf. [15]) for the 
mental state of an agent that intensively interacts with the 
environment [9]: 

‘In any trace g, internal state c occurs iff in the past once 
observation o1 occurred, then action a1(1), then o2(1), then 
a1(2), then o2(2), then a1(3), and finally o2(3)’. 
 

"t1,t2,t3,t4,t5,t6,t7 [ t1£t2£t3£t4£t5£t6£t7 
 & state(g, t1, input) |== o1 
 & state(g, t2, output) |== a1(1) & state(g, t3, input) |== o2(1) 
 & state(g, t4, output) |== a1(2) & state(g, t5, input) |== o2(2) 
 & state(g, t6, output) |== a1(3) & state(g, t7, input) |== o2(3) 
� $t8 ‡ t7 state(g, t8, internal) |== c ] 
& "t8 [ state(g, t8, internal) |== c � 
 $t1,t2,t3,t4,t5,t6,t7  t1£t2£t3£t4£t5£t6£t7£t8 
 & state(g, t1, input) |== o1 
 & state(g, t2, output) |== a1(1) & state(g, t3, input) |== o2(1) 
 & state(g, t4, output) |== a1(2) & state(g, t5, input) |== o2(2) 
 & state(g, t6, output) |== a1(3) & state(g, t7, input) |== o2(3) ] 
 

Learning Behaviour of Aplysia 
From a study [8] of adaptive processes of the sea hare Aplysia 
Californica [13]: 
‘In any trace g, if a siphon touch occurs, and at three different 
earlier time points t1, t2, t3, a siphon touch occurred, directly 
followed by a tail shock, then the animal will contract’. 
 

"t  [ state(g, t) |== siphon_touch  & 
$t1, t2, t3, t4, t5, t6 
t1<t2 & t2<t3 & t3<t4 & t4<t5 & t5<t6 & t6<t & 
state(g, t1) |== siphon_touch  & state(g, t2) |== tail_shock  & 
state(g, t3) |== siphon_touch  & state(g, t4) |== tail_shock  & 
state(g, t5) |== siphon_touch  & state(g, t6) |== tail_shock  ] 
�  $t7   t7‡t & state(g, t7) |== contraction   

 
Food Delivery Succesfulness 
From an analysis [7] of the domain of ant colony behaviour [4]: 
‘In any trace g, there is at least one ant that brings food back to 
the nest’.  
 

$t $a:ANT $l:LOCATION $e:edge 
state(g, t) |== is_at_location_from(a, l, e) & 
state(g, t) |== nest_location (l) & 
state(g, t) |== to_be_performed(a, drop_food) 

 
5. Tools 

 
This section presents the software environment1 that 

was built in SWI-Prolog to support the process of 
specification and automated verification of dynamic 
properties on a limited set of traces. Basically, this 
software environment consists of two closely integrated 
tools: the Property Editor and the Checker Tool.  

The Property Editor provides a user-friendly way of 
building and editing properties in TTL. By means of 
graphical manipulation and filling in forms a TTL 
specification can be constructed. TTL specifications may 
also be provided as plain text. When a TTL specification 
is created, the Checker Tool can be used to verify 
automatically whether a TTL property from the 
specification holds for a given set of traces. User 
interaction with the tools involves three separate actions: 

                                                 
1 The software can be downloaded from the following URL: 

http://www.cs.vu.nl/~wai/TTL. 
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1. Loading, editing, and saving a TTL specification in 
the Property Editor (see Figure 3). 

2. Loading and inspecting traces to be checked by 
activating the Trace Manager. Both, traces produced 
by simulations (see [6]) and empirical traces can be 
used for verification. Empirical traces provided to 
the TTL Checker may be obtained by formalizing 
empirical data from log-files produced by 
information systems or from results of experiments. 

3. Checking a property against a set of loaded traces by 
the Checker Tool. The property is compiled and 
checked, and the result is presented to the user.  

 
 

 
 
 
 
 
 
 
 
 
 
 
Figure 3. The TTL Checking Environment 
 
The following sections provide more details on 

implementation of these tools. In particular, Section 5.1 
describes the implementation of the TTL Editor and 
Section 5.2 discusses the verification procedure 
underlying the TTL checker. 

 
5.1 Implementation of the TTL Editor 

 
A TTL specification constructed in the TTL Property 

Editor consists of a number of user-defined property 
definitions and sort definitions. A property definition 
consists of a header (property name and arguments, i.e., 
prop_name(v1:s1, v2:s2)) and a body (a TTL formula). 
Arbitrary sorts may be defined by enumerating their 
elements. 

A TTL formula is constructed from atomic TTL 
formulae by conjunction, (Formula1 and Formula2), 
disjunction (Formula1 or Formula2), negation (not Formula), 
implication and quantification (forall ([v1:s1, v2:s2], 

Formula), exists ([v1:s1, v2:s2 < term2], Formula)). 
Atomic TTL formulae correspond to user-defined 

properties, holds atoms (e.g., holds(state(trace1, t, 

output(ew)), a1 Ù a2) or state(trace1, t, output(ew)) |== a1 Ù a2), 
mathematical expressions (e.g. term1 = term2, term1 > term2) 
and built-in properties (i.e., complex properties encoded 
into the implementation language). 

All TTL formulae are constructed from terms that are 
implemented as Prolog terms (e.g., fn(t1,t2) , n1, t1 + t3, 1.3). 

Constants, variables and functions from which terms are 
constructed should be typed with appropriate sorts. For 
example, each variable should be declared as 
variable_name: sort. The software supports a number of 
built-in sorts, among which sorts for integer, real and 
range of integers (i.e., sorts integer, real, 
between(i1:integer,i2:integer)), the sort for the set of all states 
(STATE) and the sort for the set of all traces (TRACE). 
Furthermore, libraries with predefined general purpose 
and domain-specific sorts and functions are available for 
creating terms. 

 
5.2 Verification by the TTL Checker 

 
After a TTL property is specified in the Editor and 

traces being loaded by the Trace Manager, the Checker 
Tool may be used to determine if the considered property 
holds on the loaded traces. To perform such verification 
an algorithm has been developed. 

The verification algorithm is a backtracking algorithm 
that systematically considers all possible instantiations of 
variables in the TTL formula under verification. However, 
not for all quantified variables in the formula the same 
backtracking procedure is used. Backtracking over 
variables occurring in holds atoms is replaced by 
backtracking over values occurring in the corresponding 
holds atoms in traces under consideration. Since there are 
a finite number of such state atoms in the traces, iterating 
over them often will be more efficient than iterating over 
the whole range of the variables occurring in the holds 
atoms. Formulae that contain variables quantified over 
infinite sorts not occurring in a holds atom cannot be 
checked by the TTL Checker. 

As time plays an important role in TTL-formulae, 
special attention is given to continuous and discrete time 
range variables. Because of the finite variability property 
of TTL traces (i.e., only a finite number of state changes 
occur between any two time points), it is possible to 
partition the time range into a minimum set of intervals 
within which all atoms occurring in the property are 
constant in all traces. Quantification over continuous or 
discrete time variables is replaced by quantification over 
this finite set of time intervals. 

In order to increase the efficiency of verification, the 
TTL formula that needs to be checked is compiled into a 
Prolog clause. Compilation is obtained by mapping 
conjunctions, disjunctions and negations of TTL formulae 
to their Prolog equivalents, and by transforming universal 
quantification into existential quantification. Thereafter, if 
this Prolog clause succeeds, the corresponding TTL 
formula holds with respect to all traces under 
consideration. 

The complexity of the algorithm has an upper bound in 
the order of the product of the sizes of the ranges of all 
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quantified variables. However, if a variable occurs in a 
holds atom, the contribution of that variable is no longer 
its range size, but the number of times that the holds atom 
pattern occurs (with different instantiations) in trace(s) 
under consideration. The contribution of an isolated time 
variable is the number of time intervals into which the 
traces under consideration are divided. 

The specific optimizations discussed above make it 
possible to check realistic dynamic properties with 
reasonable performance. In particular, checking the 
property ‘Learning Behaviour of Aplysia’ given in Section 
4.3 (involving eight different time points) against a single 
trace with three state atoms occurring in the verified 
formula and 28 changes of atom values over time takes 
0.76 sec. on a regular PC. With the increase of the number 
of traces with similar complexity as the first one, the 
verification time grows linearly: for 3 traces - 3.9 sec., for 
5 traces - 6.59 sec. However, the verification time is 
polynomial in the number of isolated time range variables 
occurring in the formula under verification.  
 

6. Conclusion 
 
This paper presents the predicate logical Temporal 

Trace Language (TTL) for the formal specification and 
analysis of dynamic properties of cognitive agent models. 
Although the language has a logical foundation, it 
supports the specification of both qualitative and 
quantitative aspects, and subsumes specification 
languages based on differential equations. TTL allows for 
explicit reference to time points and time durations, which 
enables modelling of the dynamics of continuous real-time 
phenomena. Furthermore, more specialised languages can 
be defined as a sublanguage of TTL. For the purpose of 
simulation, the executable language LEADSTO has been 
developed [6]. For verification of properties, different 
decidable fragments of predicate logic (e.g., [1]) can be 
defined as sublanguages of TTL. 

TTL has some similarities with the situation calculus 
[22] and the event calculus [16], which are two well-
known formalisms for representing and reasoning about 
temporal domains. However, a number of important 
syntactic and semantic distinctions exist between TTL and 
both calculi. In particular, the central notion of the 
situation calculus - a situation - has different semantics 
than the notion of a state in TTL. That is, by a situation is 
understood a history or a finite sequence of actions, 
whereas a state in TTL is associated with the assignment 
of truth values to all state properties (a “snapshot” of the 
world). Moreover, in contrast to the situation calculus, 
where transitions between situations are described by 
actions, in TTL actions are in fact properties of states. 

Moreover, although a time line has been recently 
introduced to the situation calculus [22], still only a single 

path (a temporal line) in the tree of situations can be 
explicitly encoded in the formulae. In contrast, TTL 
provides more expressivity by allowing explicit references 
to different temporally ordered sequences of states (traces) 
in dynamic properties. For example, this can be useful for 
expressing the property of trust monotonicity: 
 ‘For any two traces g1 and g2, if at each time point t agent A’s 
experience with public transportation in g2 at t is at least as good 
as A’s experience with public transportation in g1 at t, then in 
trace g2 at each point in time t, A’s trust is at least as high as A’s 
trust at t in trace g1’.  
 

"g1, g2 
["t, "v1:VALUE  [ state(g1, t) |== has_value(experience, v1) &  
["v2:VALUE state(g2, t) |== [ has_value(experience, v2) fi v1£ v2 ]]] � 
["t, "w1:VALUE  [ state(g1, t) |== has_value(trust, w1) &  
["w2:VALUE  state(g2, t) |== [ has_value(trust, w2)  fi  w1£ w2 ]]]]] 
 

Other examples of such properties, where different 
histories are compared are given in Section 4.2 above on 
trace conditioning. 

In contrast to the event calculus, TTL does not employ 
the mechanism of events that initiate and terminate 
fluents. Events in TTL are considered to be functions of 
the external world that can change states of components, 
according to specified properties of a system. 
Furthermore, similarly to the situation calculus, also in the 
event calculus only one time line is considered. 

TTL can also be related to temporal languages that are 
often used for verification (e.g., propositional temporal 
logic (PTL) and linear-time logic (LTL) [3, 12, 14]). The 
general idea of translation of a LTL formula into a TTL 
expression is rather straightforward: by replacing the 
temporal operators of LTL by quantifiers over time. E.g., 
the following LTL formula 

 

G(observation_result(itsraining) fi F(belief(itsraining))) 
 

where the temporal operator G means ‘for all later time 
points’, and F ‘for some later time point’ is translated into 
the following TTL expression:  
 

 "t1 [ state(g, t1) |== observation_result(itsraining) �  
 $t2 > t1 state(g, t2) |== belief(itsraining) ] 
 

Note that the translation is not bi-directional, i.e., it is not 
always possible to translate TTL expressions into LTL 
expressions. An example of a TTL expression that cannot 
be translated into LTL is again the property of trust 
monotonicity.  

Furthermore, TTL also allows expressivity provided 
by different extensions of PTL. In particular, the extended 
temporal logic (ETL) [25] provides a possibility to 
express any property definable by a regular expression on 
sequences of states, which cannot be expressed in PTL. 
Due to the fact that the syntax of TTL provides 
quantifiers, predicates, and arithmetic functions, such 
properties can be also expressed in TTL. For example, the 
property “a given proposition p has to be true in every 
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even state of a sequence” can be expressed in TTL as 
follows: "t  state(g, 2•t) |== p. 

To support the formal specification and analysis of 
dynamic properties in TTL, special software tools (the 
Property Editor and the Checker Tool) have been 
developed. The Property Editor has an intuitive graphical 
interface for building and editing TTL properties, and the 
Checker Tool employs an efficient algorithm for the 
formal verification of properties against a limited set of 
traces. Although this form of checking is not as exhaustive 
as model checking (which essentially means checking 
properties on the set of all traces generated by model 
execution), in return, it allows more expressivity in 
specifying properties.  

The TTL environment has been tested and proved its 
value in a number of projects within different domains; 
e.g., [5, 7, 8, 9, 10]). During this work, the TTL 
environment has been further developed to provide 
automated support. 
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