
Specification and Verification of Dynamics in Cognitive Agent Models

Tibor Bosse1, Catholijn M. Jonker2, Lourens van der Meij1,
Alexei Sharpanskykh1, and Jan Treur1

1 Vrije Universiteit Amsterdam, Department of Artificial Intelligence,
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

2 Radboud Universiteit Nijmegen, Nijmegen Institute for Cognition and Information,
Montessorilaan 3, 6525 HR Nijmegen, The Netherlands

{tbosse, lourens, sharp, treur}@few.vu.nl, C.Jonker@nici.ru.nl

Abstract

Within many domains, among which biological and
cognitive areas, multiple interacting processes occur
among agents with dynamics that are hard to handle.
Current approaches to analyse the dynamics of such
processes, often based on differential equations, are not
always successful. As an alternative to differential
equations, this paper presents the predicate logical
Temporal Trace Language (TTL) for the formal
specification and analysis of dynamic properties. This
language supports the specification of both qualitative
and quantitative aspects, and therefore subsumes
specification languages based on differential equations. A
software environment has been developed for TTL, that
supports editing TTL properties and enables the formal
verification of properties against a set of traces. The TTL
environment proved its value in a number of projects
within different domains.

1. Introduction

In domains such as Biology and Cognitive Science, the

dynamics of the multiple interacting processes among
different agents involved poses modelling challenges.
Currently, differential equations are among the techniques
most often used to address this challenge, with partial
success. For example, in the area of intracellular
processes, hundreds or more reaction parameters (for
which reliable values are rarely available) are needed to
model the processes in question. Thus, describing these
processes in terms of differential equations can seriously
compromise the feasibility of the model. Likewise, in the
area of Cognitive Science, the Dynamical Systems Theory
that is also based on differential equations (DST, see e.g.,
[21]), is well practiced and successful. However, the
models typically only address lower-level agent cognitive
processes such as sensory or motor processing. DST has
less to offer for modelling the dynamics of higher-level
processes with a mainly qualitative character, such as

agent reasoning, complex task performance, and certain
capabilities of language processing.

For formal qualitative modelling of processes at a high
level of abstraction, logic-based methods have proved
useful. For example, variants of modal temporal logic [2,
12, 14, 19, 24] gained popularity in agent technology.
However, many of the logic-based methods lack the
quantitative expressivity, needed, e.g., for modelling
processes for which precise timing relations play an
essential role (e.g., biological and chemical processes).

Thus, within several disciplines the need exists for
general modelling and analysis techniques capable to deal
with complex agent systems that comprise both
quantitative and qualitative aspects. This paper introduces
the Temporal Trace Language (TTL) as such a technique
for the analysis of dynamic properties within complex
domains, and especially, for the cognitive domain. In
Section 2, a novel perspective is put forward for the
development of such a technique, based on the idea of
checking dynamic properties on given sets of traces.
Section 3 shows how dynamics of an agent system can be
modelled using the TTL language. Examples of the
application of TTL are presented in Section 4. Section 5
describes the tools that support the TTL modelling
environment in detail. In particular, the TTL Property
Editor and the TTL Checker Tool are discussed. Section 6
is a conclusion.

2. Perspective of this Paper

As follows from the discussion above, the demands for

dynamic modelling and analysis approaches suitable for
specifying agent systems in natural domains are nontrivial.
In particular, the possibility of both discrete and
continuous modelling of a system at different aggregation
levels is demanded. Furthermore, numerical expressivity
is required for modelling systems with explicitly defined
quantitative relations best presented by difference or
differential equations. Moreover, for specifying
qualitative aspects of a system, modelling languages

Proceedings of the IEEE/WIC/ACM International
Conference on Intelligent Agent Technology (IAT'06)
0-7695-2748-5/06 $20.00 © 2006

should be able to express logical relationships between
parts of a system.

Desiderata for analysis techniques include both the
generation and formalisation of simulated and empirical
trajectories or traces, as well as analysis of complex
dynamic properties of such traces and relationships
between such properties. A trace as used here represents a
temporally ordered sequence of states of an agent system.
Each state is characterised by a number of state properties
that hold. Simulated traces may be obtained by performing
simulations based on both quantitative (or continuous) and
qualitative (or discrete) variables.

Taken together, the desiderata for modelling languages
and analysis techniques described above are not easy to
fulfil. On the one hand, high expressivity is desired, on the
other hand feasible analysis techniques are demanded. To
provide automated support for these analyses the
expressivity of the modelling language can be limited,
thereby compromising the desiderata for modelling
languages. For example, the expressivity may be limited
to difference and differential equations as in DST
(excluding logical relationships), or to propositional
modal temporal logics (excluding numerical
relationships). In the former case, calculus can be
exploited to do simulation and analysis based on
continuous variables only [21]. In the latter case,
simulation is based on a specific logical executable
format, which does not allow expressions involving
continuous variables (e.g., executable temporal logic [2]).
Another possibility is to use a number of dedicated formal
languages with limited expressiveness and related to them
analysis techniques for checking different particular static
and dynamic aspects of a system (e.g., structural
consistency of a model, dynamic aspects of execution), as
proposed in the methodology for the development of
correct software KORSO [11]. The languages used in this
project describe different formats of system specifications,
relations between them (e.g., by refinement based on
proof obligations) and the temporal development of these
specifications for all phases of the software life cycle.
However, in order to guarantee the overall correctness of
a system some properties are required to be expressed
using more than one language with different types of
semantics. Thus, the problem of verification across
different not related proof systems arises that is not
addressed in this project.

The problem of checking relationships between
dynamic properties of a system, identified above as one of
the desiderata for analysis techniques, is essentially the
problem of justifying entailment relations between sets of
properties defined at different aggregation levels of a
system’s representation. In general, entailment relations
can be established either by logical proof procedures or by
checking properties of a higher aggregation level on the
set of all theoretically possible traces generated by

executing a system specification that consists of properties
of a lower aggregation level (i.e., by performing model
checking [12, 19, 24]). To make it feasible to check
relationships between dynamic properties, expressivity of
the language for these properties has to be sacrificed to a
large extent. However, checking properties on a given set
of traces of practical size (instead of all theoretically
possible ones), obtained empirically or by simulation, is
computationally much cheaper. Therefore, in that case the
language for these properties can be more expressive,
such as the sorted predicate logic temporal trace language
TTL described in this paper. TTL fulfils all of the
identified above desiderata for modelling languages and
can be used both for formalisation of empirical and
simulated traces and for analysis of properties on traces.
Although TTL cannot be used to generate traces by
simulation, an executable sublanguage of TTL, such as
LEADSTO, cf. [6], may be defined for this purpose.
Moreover, decidable fragments of TTL may be defined
for the analysis of relationships between dynamic
properties of a system.

Finally, having a language for simulation and
languages for analysis within one subsuming language
also opens the possibility of having a declarative
specification of a simulation model, and thus to involve
simulation models in logical analyses.

3. A Language to Model Agent Behaviour

The Temporal Trace Language (TTL) presented here is

developed from the assumption that the dynamics of an
agent system can be described as evolution of states of
agents and an environment over time, as for modal
temporal logics, see e.g., [2, 12, 14, 19, 24]. TTL has
some similarities with situation calculus, see [22] and
event calculus, see [16]. Time in TTL is assumed to be
linearly ordered and depending on the application, it may
be dense (e.g., the real numbers), or discrete (e.g., the set
of integers or natural numbers or a finite initial segment of
the natural numbers), or any other form with a linear
ordering. An agent interacts with a dynamic environment
via its input and output (interface) states. At its input the
agent receives observations from the environment whereas
at its output it generates actions that can change a state of
the environment.

An agent state at a certain point in time as used here is
an indication of which of the state properties of the agent
and its environment (e.g., observations and actions) are
true (hold) at that time point. For specifying state
properties for the input, output, internal, and external
states of an agent A, ontologies, named IntOnt(A), InOnt(A),
OutOnt(A), and ExtOnt(A) respectively, are used which are
specified by a number of sorts, sorted constants, variables,
functions and predicates (i.e., a signature). State

Proceedings of the IEEE/WIC/ACM International
Conference on Intelligent Agent Technology (IAT'06)
0-7695-2748-5/06 $20.00 © 2006

properties are specified using a standard multi-sorted first-
order predicate language based on such ontologies. For
example, a state property expressed as a predicate pain
may belong to IntOnt(A), whereas the atom
has_temperature(environment, 7) may belong to ExtOnt(A).

To characterize the dynamics of the agent and the
environment, dynamic properties relate properties of
states at certain points in time.

To enable reasoning about the dynamic properties of
arbitrary systems the language TTL includes special sorts,
such as: TIME (a set of linearly ordered time points),
STATE (a set of all state names of an agent system),
TRACE (a set of all trace names; a trace or a trajectory can
be thought of as a timeline with for each time point a
state), and STATPROP (a set of all state property names).
Throughout the paper, variables such as t, t1, t2, t’, t” stand
for variables of the sort TIME; and variables such as g, g1,

g2 stand for variables of the sort TRACE.
A state of an agent is related to a state property via the

satisfaction relation |== formally defined as a binary infix
predicate (or by holds as a binary prefix predicate in the
software environment). For example, “in the output state of
agent A in trace g

���
at time t property p holds” is formalized by

state(g , t, output(A)) |== p. If the indication of an agent aspect
is not essential, the third argument is left out: state(g, t) |== p.

Both state(g , t, output(A)) and p are terms of the TTL
language. TTL terms are constructed by induction in a
standard way for sorted predicate logic from variables,
constants and functional symbols typed with TTL sorts.
Dynamic properties are expressed by TTL-formulae
inductively defined by:
(1) If v1 is a term of sort STATE, and u1 is a term of the sort

STATPROP, then holds(v1, u1) is an atomic TTL formula.
(2) If t1, t2 are terms of any TTL sort, then t1 = t2 is an atomic

TTL formula.
(3) If t1, t2 are terms of sort TIME, then t1 < t2 is an atomic TTL

formula.
(4) The set of well-formed TTL-formulae is defined inductively

in a standard way based on atomic TTL-formulae using
boolean propositional connectives and quantifiers.

For example, the dynamic property

‘in any trace g, if at any point in time t1 agent A observes
that it is dark in the room, whereas earlier a light was on in
this room, then there exists a point in time t2 after t1 such
that at t2 in the trace g agent A switches on a lamp’

is expressed in formalized form as:
 "t1 [[state(g, t1, input(A)) |== observed(dark_in_room) &
 $t0<t1 [state(g, t0, input(A)) |== observed(light_on)]
 � $t2 ‡ t1 state(g, t2, output(A)) |== performing_action(switch_on_light)]

As TTL uses order-sorted predicate logic as a point of
departure, it inherits the standard semantics of this variant
of predicate logic. That is, the semantics of TTL is
defined in a standard way, by interpretation of sorts,
constants, functions and predicates, and a variable

assignment. However, in addition the semantics involves
some specialised aspects. As a number of standard sorts
are present, the elements of these sorts are limited to
instances of specified terms in these sorts, as is usual, for
example, in logic programming semantics. For example,
for the sort TIME it is assumed that in its semantics its
elements consist of the time points of the fixed time frame
chosen. Moreover, for the sort TRACE, it is assumed that
in its semantics its elements consists of a (limited) number
of elements named by constants. Furthermore, for the sort
STATPROP for state properties it is assumed that in its
semantics its elements consist of the set of terms denoting
the propositions built in a chosen state language (this is
called reification). A full description of the technical
details of TTL's semantics is beyond the scope of the
current paper. For this purpose, see [23].

By executing dynamic properties traces can be
generated and visualised, for example as in Figure 1.
Here, the time frame is depicted on the horizontal axis.
The names of predicates are shown on the vertical axis. A
dark box on top of the line indicates that the predicate is
true during that time period.

input(A)|observed(light_on)

input(A)|observed(dark_in_room)
output(A)|performing_action(switch_on_lamp)

time 0 0.5 1 1.5 2 2.5 3 3.5

Figure 1. Example visualisation of a trace

4. Application Areas

The TTL language and its supporting software

environment have been applied in research projects
addressing different topics in cognitive domains, such as
human reasoning, conditioning, consciousness,
psychotherapy, and philosophy of mind. The main
research goal in these projects was to analyse the
behavioural dynamics of the agents involved (e.g., [5, 7,
8, 9, 10]). TTL was used to formalise dynamic properties
of these processes at a high level of abstraction. Next,
such properties were automatically checked against
simulated or empirical traces. Examples of the application
of TTL in different areas are presented in this section.

4.1 Modelling and Analysis of Hybrid Systems

Hybrid systems incorporate both continuous and

discrete components. The dynamics of the former can be
described by differential equations, those of the latter can
be represented by finite-state automata. Both continuous
and discrete dynamics of components influence each
other. In particular, the input to the continuous dynamics
is the result of some function of the discrete state of a
system; whereas the input of the discrete dynamics is
determined by the value of the continuous state.

Proceedings of the IEEE/WIC/ACM International
Conference on Intelligent Agent Technology (IAT'06)
0-7695-2748-5/06 $20.00 © 2006

A modelling method for hybrid systems should be
capable of expressing both quantitative and qualitative
properties of the system and integrating them into one
model. TTL satisfies this requirement. Systems of
differential equations can be expressed in TTL using
discrete or dense time frames. As an example, Euler’s
method, see [20], for solving differential equations is
modelled in TTL. Euler’s method approximates a
differential equation dy/dt = f(y) with the initial condition

y(t0)=y0 by a difference equation yi+1=yi+h*f(yi) (i‡0 is the step
number and h>0 is the integration step size). This equation
can be modelled in TTL in the following way:

"g "t "v: LVALUEGTERMS state(g , t) |== has_value(y, v) �

state(g , t+1) |== has_value(y, v + h • f(v))

States specify the respective values of y at different time
points and the difference equation is modelled by a
transition rule from the current to the successive state. The
traces g satisfying the above dynamic property are the
solutions of the difference equation. More precise and
stable numerical approximation methods (e.g., Runge-
Kutta, dynamic step size, see [20]) can be expressed in
TTL in a similar manner.

4.2 Analysis of Trace Conditioning in TTL

The example given in this section is taken from [5]. In

that paper, TTL is used to analyse the temporal dynamics
of trace conditioning. In general, research into
conditioning is aimed at revealing the principles that
govern associative learning. An important issue in
conditioning processes is the adaptive timing of the
conditioned response to the appearance of the
unconditioned stimulus. This feature is most apparent in
an experimental procedure called trace conditioning. In
this procedure, a trial starts with the presentation of a
warning stimulus (S1, comparable to a conditioned
stimulus). After a blank interval, called the foreperiod, an
imperative stimulus (S2, comparable to an unconditioned
stimulus) is presented to which the participant responds as
fast as possible. The reaction time to S2 is used as an
estimate of the conditioned state of preparation at the
moment S2 is presented. In this case, the conditioned
response obtains its maximal strength, here called peak
level, at a moment in time, called peak time, that closely
corresponds to the moment the unconditioned stimulus
occurs.

Machado [18] developed a basic model that describes
the dynamics of these conditioning processes in terms of
differential equations. The structure of this model is
shown in Figure 2. The model posits a layer of timing
nodes and a single preparation node. Each timing node is
connected both to the next (and previous) timing node and
to the preparation node. The connection between each
timing node and the preparation node (called associative

link) has an adjustable weight associated to it. Upon the
presentation of a warning stimulus, a cascade of activation
propagates through the timing nodes according to a
regular pattern. Owing to this regularity, the timing nodes
can be likened to an internal clock or pacemaker. At any
moment, each timing node contributes to the activation of
the preparation node in accordance with its activation and
its corresponding weight. The activation of the
preparation node reflects the participant's preparatory
state, and is as such related to reaction time. The weights
reflect the state of conditioning, and are adjusted by
learning rules, of which the main principles are as follows.
First, during the foreperiod extinction takes place, which
involves the decrease of weights in real time in proportion
to the activation of their corresponding timing nodes.
Second, after the presentation of the imperative stimulus a
process of reinforcement takes over, which involves an
increase of the weights in accordance with the current
activation of their timing nodes, to preserve the
importance of the imperative moment. Machado describes
the more detailed dynamics of the process by a
mathematical model (based on linear differential
equations), representing the (local) temporal relationships
between the variables involved. For example,

dX(t,n)/dt = lX(t,n-1) - lX(t,n)
expresses how the activation level of the n-th timing node
X(t+dt,n) at time point t+dt relates to this level X(t,n) at time
point t and the activation level X(t,n-1) of the (n-1)-th
timing node at time point t. Similarly, as another example,

dW(t,n)/dt = -aX(t,n)W(t,n)
relates the n-th weight W(t+dt,n) at time point t+dt to this
weight W(t,n) at time point t and the activation level X(t,n)

of the n-th timing node at time point t.

Figure 2. Structure of Machado’s conditioning model.

In [5], a number of dynamic properties relevant for

trace conditioning have been formalised in TTL. These
properties were taken from the existing literature on
conditioning, such as [17], in which they were mainly
expressed informally. TTL turned out useful to express
these properties in a formal manner. An example of such a
property (taken from [17], p.372) is given below, both in
informal, semi-formal and in formal notation:

S1

Timing nodes with
activation level X

Associative links of
variable weight W

Preparation node

Response strength R

Proceedings of the IEEE/WIC/ACM International
Conference on Intelligent Agent Technology (IAT'06)
0-7695-2748-5/06 $20.00 © 2006

Global Hill Preparation
Informal: ‘The state of conditioning implicates an increase and
decay of response-related activation as a critical moment is
bypassed in time’.
Semi-formal: ‘In trace g, if at t1 a stimulus s1 starts, then the
preparation level will increase from t1 until t2 and decrease from
t2 until t1 + u, under the assumption that no stimulus occurs too
soon (within u time) after t1.’ Formally:

has_global_hill_prep(g:TRACE, t1,t2:TIME, u:INTEGER)
�

"t’,t”:TIME "p’,p”:REAL
[state(g, t1) |== stimulus_occurs &
Ø stimulus_starts_within(g, t1, t1+u) &
state(g, t’) |== preparation_level(p’) &
state(g, t”) |== preparation_level(p”)
� [t1 £ t’ < t” £ t2 & t” £ t1 + u � p’ < p”] &
 [t2 £ t’ < t” £ t1 + u � p’ > p”]]

Here, stimulus_starts_within is defined as follows:

stimulus_starts_within(g:TRACE, t1,t2:TIME)
�

$t:TIME [state(g, t) |== stimulus_occurs & t1 < t < t2]

These (and various similar) properties were automatically
verified using the TTL checker tool against a number of
(empirical and simulation) traces. Among these properties
were also properties that compare different traces, such as:
‘the conditioned response takes more time to build up and decay and its
corresponding asymptotic value is lower when its corresponding critical
moment is more remote from the warning signal.’ (cf. [17])

Such properties cannot be expressed, for example, in
modal temporal logics, just like familiar properties such as
‘exercise improves skill’, expressing that the more
intensive a training history, e.g., of an athlete, the better
the skill will be.

4.3 Application of TTL in Other Areas

Besides the conditioning area, TTL has been applied in

many other domains as well. In order to give a
representative overview in limited space, below a number
of TTL formulae used in other domains are presented
(both in informal and formal notation):

Proper Rejection Grounding
From the domain of human reasoning [10]:
‘In any trace g, if an assumption is rejected, then earlier on there
was a prediction for it that did not match the corresponding
observation result’.

"t "A:INFO_EL "S1:SIGN
 state(g, t) |== rejected(A,S1) �
 [$t’:TIME $B:INFO_EL $S2,S3:SIGN

state(g, t’) |== prediction_for(B, S2, A, S1) &
state(g, t’) |== observation_result(B, S3) &
S2

�
 S3 & t’ £ t1]

Representational Content of c
From a paper about representational content (cf. [15]) for the
mental state of an agent that intensively interacts with the
environment [9]:

‘In any trace g, internal state c occurs iff in the past once
observation o1 occurred, then action a1(1), then o2(1), then
a1(2), then o2(2), then a1(3), and finally o2(3)’.

"t1,t2,t3,t4,t5,t6,t7 [t1£t2£t3£t4£t5£t6£t7
 & state(g, t1, input) |== o1
 & state(g, t2, output) |== a1(1) & state(g, t3, input) |== o2(1)
 & state(g, t4, output) |== a1(2) & state(g, t5, input) |== o2(2)
 & state(g, t6, output) |== a1(3) & state(g, t7, input) |== o2(3)
� $t8 ‡ t7 state(g, t8, internal) |== c]
& "t8 [state(g, t8, internal) |== c �
 $t1,t2,t3,t4,t5,t6,t7 t1£t2£t3£t4£t5£t6£t7£t8
 & state(g, t1, input) |== o1
 & state(g, t2, output) |== a1(1) & state(g, t3, input) |== o2(1)
 & state(g, t4, output) |== a1(2) & state(g, t5, input) |== o2(2)
 & state(g, t6, output) |== a1(3) & state(g, t7, input) |== o2(3)]

Learning Behaviour of Aplysia
From a study [8] of adaptive processes of the sea hare Aplysia
Californica [13]:
‘In any trace g, if a siphon touch occurs, and at three different
earlier time points t1, t2, t3, a siphon touch occurred, directly
followed by a tail shock, then the animal will contract’.

"t [state(g, t) |== siphon_touch &
$t1, t2, t3, t4, t5, t6
t1<t2 & t2<t3 & t3<t4 & t4<t5 & t5<t6 & t6<t &
state(g, t1) |== siphon_touch & state(g, t2) |== tail_shock &
state(g, t3) |== siphon_touch & state(g, t4) |== tail_shock &
state(g, t5) |== siphon_touch & state(g, t6) |== tail_shock]
� $t7 t7‡t & state(g, t7) |== contraction

Food Delivery Succesfulness
From an analysis [7] of the domain of ant colony behaviour [4]:
‘In any trace g, there is at least one ant that brings food back to
the nest’.

$t $a:ANT $l:LOCATION $e:edge
state(g, t) |== is_at_location_from(a, l, e) &
state(g, t) |== nest_location (l) &
state(g, t) |== to_be_performed(a, drop_food)

5. Tools

This section presents the software environment1 that

was built in SWI-Prolog to support the process of
specification and automated verification of dynamic
properties on a limited set of traces. Basically, this
software environment consists of two closely integrated
tools: the Property Editor and the Checker Tool.

The Property Editor provides a user-friendly way of
building and editing properties in TTL. By means of
graphical manipulation and filling in forms a TTL
specification can be constructed. TTL specifications may
also be provided as plain text. When a TTL specification
is created, the Checker Tool can be used to verify
automatically whether a TTL property from the
specification holds for a given set of traces. User
interaction with the tools involves three separate actions:

1 The software can be downloaded from the following URL:

http://www.cs.vu.nl/~wai/TTL.

Proceedings of the IEEE/WIC/ACM International
Conference on Intelligent Agent Technology (IAT'06)
0-7695-2748-5/06 $20.00 © 2006

1. Loading, editing, and saving a TTL specification in
the Property Editor (see Figure 3).

2. Loading and inspecting traces to be checked by
activating the Trace Manager. Both, traces produced
by simulations (see [6]) and empirical traces can be
used for verification. Empirical traces provided to
the TTL Checker may be obtained by formalizing
empirical data from log-files produced by
information systems or from results of experiments.

3. Checking a property against a set of loaded traces by
the Checker Tool. The property is compiled and
checked, and the result is presented to the user.

Figure 3. The TTL Checking Environment

The following sections provide more details on

implementation of these tools. In particular, Section 5.1
describes the implementation of the TTL Editor and
Section 5.2 discusses the verification procedure
underlying the TTL checker.

5.1 Implementation of the TTL Editor

A TTL specification constructed in the TTL Property

Editor consists of a number of user-defined property
definitions and sort definitions. A property definition
consists of a header (property name and arguments, i.e.,
prop_name(v1:s1, v2:s2)) and a body (a TTL formula).
Arbitrary sorts may be defined by enumerating their
elements.

A TTL formula is constructed from atomic TTL
formulae by conjunction, (Formula1 and Formula2),
disjunction (Formula1 or Formula2), negation (not Formula),
implication and quantification (forall ([v1:s1, v2:s2],

Formula), exists ([v1:s1, v2:s2 < term2], Formula)).
Atomic TTL formulae correspond to user-defined

properties, holds atoms (e.g., holds(state(trace1, t,

output(ew)), a1 Ù a2) or state(trace1, t, output(ew)) |== a1 Ù a2),
mathematical expressions (e.g. term1 = term2, term1 > term2)
and built-in properties (i.e., complex properties encoded
into the implementation language).

All TTL formulae are constructed from terms that are
implemented as Prolog terms (e.g., fn(t1,t2) , n1, t1 + t3, 1.3).

Constants, variables and functions from which terms are
constructed should be typed with appropriate sorts. For
example, each variable should be declared as
variable_name: sort. The software supports a number of
built-in sorts, among which sorts for integer, real and
range of integers (i.e., sorts integer, real,
between(i1:integer,i2:integer)), the sort for the set of all states
(STATE) and the sort for the set of all traces (TRACE).
Furthermore, libraries with predefined general purpose
and domain-specific sorts and functions are available for
creating terms.

5.2 Verification by the TTL Checker

After a TTL property is specified in the Editor and

traces being loaded by the Trace Manager, the Checker
Tool may be used to determine if the considered property
holds on the loaded traces. To perform such verification
an algorithm has been developed.

The verification algorithm is a backtracking algorithm
that systematically considers all possible instantiations of
variables in the TTL formula under verification. However,
not for all quantified variables in the formula the same
backtracking procedure is used. Backtracking over
variables occurring in holds atoms is replaced by
backtracking over values occurring in the corresponding
holds atoms in traces under consideration. Since there are
a finite number of such state atoms in the traces, iterating
over them often will be more efficient than iterating over
the whole range of the variables occurring in the holds
atoms. Formulae that contain variables quantified over
infinite sorts not occurring in a holds atom cannot be
checked by the TTL Checker.

As time plays an important role in TTL-formulae,
special attention is given to continuous and discrete time
range variables. Because of the finite variability property
of TTL traces (i.e., only a finite number of state changes
occur between any two time points), it is possible to
partition the time range into a minimum set of intervals
within which all atoms occurring in the property are
constant in all traces. Quantification over continuous or
discrete time variables is replaced by quantification over
this finite set of time intervals.

In order to increase the efficiency of verification, the
TTL formula that needs to be checked is compiled into a
Prolog clause. Compilation is obtained by mapping
conjunctions, disjunctions and negations of TTL formulae
to their Prolog equivalents, and by transforming universal
quantification into existential quantification. Thereafter, if
this Prolog clause succeeds, the corresponding TTL
formula holds with respect to all traces under
consideration.

The complexity of the algorithm has an upper bound in
the order of the product of the sizes of the ranges of all

Proceedings of the IEEE/WIC/ACM International
Conference on Intelligent Agent Technology (IAT'06)
0-7695-2748-5/06 $20.00 © 2006

quantified variables. However, if a variable occurs in a
holds atom, the contribution of that variable is no longer
its range size, but the number of times that the holds atom
pattern occurs (with different instantiations) in trace(s)
under consideration. The contribution of an isolated time
variable is the number of time intervals into which the
traces under consideration are divided.

The specific optimizations discussed above make it
possible to check realistic dynamic properties with
reasonable performance. In particular, checking the
property ‘Learning Behaviour of Aplysia’ given in Section
4.3 (involving eight different time points) against a single
trace with three state atoms occurring in the verified
formula and 28 changes of atom values over time takes
0.76 sec. on a regular PC. With the increase of the number
of traces with similar complexity as the first one, the
verification time grows linearly: for 3 traces - 3.9 sec., for
5 traces - 6.59 sec. However, the verification time is
polynomial in the number of isolated time range variables
occurring in the formula under verification.

6. Conclusion

This paper presents the predicate logical Temporal

Trace Language (TTL) for the formal specification and
analysis of dynamic properties of cognitive agent models.
Although the language has a logical foundation, it
supports the specification of both qualitative and
quantitative aspects, and subsumes specification
languages based on differential equations. TTL allows for
explicit reference to time points and time durations, which
enables modelling of the dynamics of continuous real-time
phenomena. Furthermore, more specialised languages can
be defined as a sublanguage of TTL. For the purpose of
simulation, the executable language LEADSTO has been
developed [6]. For verification of properties, different
decidable fragments of predicate logic (e.g., [1]) can be
defined as sublanguages of TTL.

TTL has some similarities with the situation calculus
[22] and the event calculus [16], which are two well-
known formalisms for representing and reasoning about
temporal domains. However, a number of important
syntactic and semantic distinctions exist between TTL and
both calculi. In particular, the central notion of the
situation calculus - a situation - has different semantics
than the notion of a state in TTL. That is, by a situation is
understood a history or a finite sequence of actions,
whereas a state in TTL is associated with the assignment
of truth values to all state properties (a “snapshot” of the
world). Moreover, in contrast to the situation calculus,
where transitions between situations are described by
actions, in TTL actions are in fact properties of states.

Moreover, although a time line has been recently
introduced to the situation calculus [22], still only a single

path (a temporal line) in the tree of situations can be
explicitly encoded in the formulae. In contrast, TTL
provides more expressivity by allowing explicit references
to different temporally ordered sequences of states (traces)
in dynamic properties. For example, this can be useful for
expressing the property of trust monotonicity:
 ‘For any two traces g1 and g2, if at each time point t agent A’s
experience with public transportation in g2 at t is at least as good
as A’s experience with public transportation in g1 at t, then in
trace g2 at each point in time t, A’s trust is at least as high as A’s
trust at t in trace g1’.

"g1, g2
["t, "v1:VALUE [state(g1, t) |== has_value(experience, v1) &
["v2:VALUE state(g2, t) |== [has_value(experience, v2) fi v1£ v2]]] �
["t, "w1:VALUE [state(g1, t) |== has_value(trust, w1) &
["w2:VALUE state(g2, t) |== [has_value(trust, w2) fi w1£ w2]]]]]

Other examples of such properties, where different
histories are compared are given in Section 4.2 above on
trace conditioning.

In contrast to the event calculus, TTL does not employ
the mechanism of events that initiate and terminate
fluents. Events in TTL are considered to be functions of
the external world that can change states of components,
according to specified properties of a system.
Furthermore, similarly to the situation calculus, also in the
event calculus only one time line is considered.

TTL can also be related to temporal languages that are
often used for verification (e.g., propositional temporal
logic (PTL) and linear-time logic (LTL) [3, 12, 14]). The
general idea of translation of a LTL formula into a TTL
expression is rather straightforward: by replacing the
temporal operators of LTL by quantifiers over time. E.g.,
the following LTL formula

G(observation_result(itsraining) fi F(belief(itsraining)))

where the temporal operator G means ‘for all later time
points’, and F ‘for some later time point’ is translated into
the following TTL expression:

 "t1 [state(g, t1) |== observation_result(itsraining) �
 $t2 > t1 state(g, t2) |== belief(itsraining)]

Note that the translation is not bi-directional, i.e., it is not
always possible to translate TTL expressions into LTL
expressions. An example of a TTL expression that cannot
be translated into LTL is again the property of trust
monotonicity.

Furthermore, TTL also allows expressivity provided
by different extensions of PTL. In particular, the extended
temporal logic (ETL) [25] provides a possibility to
express any property definable by a regular expression on
sequences of states, which cannot be expressed in PTL.
Due to the fact that the syntax of TTL provides
quantifiers, predicates, and arithmetic functions, such
properties can be also expressed in TTL. For example, the
property “a given proposition p has to be true in every

Proceedings of the IEEE/WIC/ACM International
Conference on Intelligent Agent Technology (IAT'06)
0-7695-2748-5/06 $20.00 © 2006

even state of a sequence” can be expressed in TTL as
follows: "t state(g, 2•t) |== p.

To support the formal specification and analysis of
dynamic properties in TTL, special software tools (the
Property Editor and the Checker Tool) have been
developed. The Property Editor has an intuitive graphical
interface for building and editing TTL properties, and the
Checker Tool employs an efficient algorithm for the
formal verification of properties against a limited set of
traces. Although this form of checking is not as exhaustive
as model checking (which essentially means checking
properties on the set of all traces generated by model
execution), in return, it allows more expressivity in
specifying properties.

The TTL environment has been tested and proved its
value in a number of projects within different domains;
e.g., [5, 7, 8, 9, 10]). During this work, the TTL
environment has been further developed to provide
automated support.

References

[1] Andreka, H., Nemeti, I., and van Benthem, J. (1998).
Modal Languages and Bounded Fragments of Predicate Logic.
Journal of Philosophical Logic, 27(3): 217-274, 1998.

[2] Barringer, H., M. Fisher, D. Gabbay, R. Owens, & M.
Reynolds (1996). The Imperative Future: Principles of
Executable Temporal Logic, Research Studies Press Ltd. and
John Wiley & Sons.

[3] Benthem, J.F.A.K., van (1983). The Logic of Time: A
Model-theoretic Investigation into the Varieties of Temporal
Ontology and Temporal Discourse, Reidel, Dordrecht.

[4] Bonabeau, J. Dorigo, M. and Theraulaz, G. (1999). Swarm
Intelligence: From Natural to Artificial Systems. Oxford
University Press, New York.

[5] Bosse, T., Jonker, C.M., Los, S.A., Torre, L. van der, and
Treur, J. (2005). Formalisation and Analysis of the Temporal
Dynamics of Conditioning. In: Mueller, J.P. and Zambonelli, F.
(eds.), Proceedings of the Sixth International Workshop on
Agent-Oriented Software Engineering, AOSE'05, pp. 157-168.

[6] Bosse, T., Jonker, C.M., Meij, L. van der, and Treur, J.
(2005). LEADSTO: a Language and Environment for Analysis
of Dynamics by SimulaTiOn. In: Eymann, T., et al. (eds.), Proc.
of the Third German Conference on Multi-Agent System
Technologies, MATES'05. LNAI, vol. 3550. Springer Verlag,
pp. 165-178

[7] Bosse, T., Jonker, C.M., Schut, M.C., and Treur, J.
(2004). Simulation and Analysis of Shared Extended Mind.
Simulation Journal (Transactions of the Society for Modelling
and Simulation), vol. 81, 2005, pp. 719 - 732.

[8] Bosse, T., Jonker, C.M., and Treur, J. (2006). An
Integrative Modelling Approach for Simulation and Analysis of

Adaptive Agents. In: Proc. of the 39th Annual Simulation
Symposium. IEEE Computer Society Press, pp. 312-319.

[9] Bosse, T., Jonker, C.M., and Treur, J. (2005).
Representational Content and the Reciprocal Interplay of Agent
and Environment. In: Leite, J., Omincini, A., Torroni, P., and
Yolum, P. (eds.), Proc. of the Second Int. Workshop on
Declarative Agent Languages and Technologies, DALT'04.
LNAI, vol. 3476. Springer Verlag, pp. 270-288.

[10] Bosse, T., Jonker, C.M., and Treur, J. (2006).
Formalization and Analyisis of Reasoning by Assumption.
Cognitive Science Journal, vol. 30, issue 1, pp. 147-180.

[11] Broy, M., and Jahnichen, S. (1995). KORSO: Methods,
Languages, and Tools for the Construction of Correct Software -
Final Report. LNCS, vol. 1009. Springer Verlag.

[12] Clarke, E.M., Grumberg, O., and Peled, D.A. (2000).
Model Checking. MIT Press.

[13] Gleitman, H. (1999). Psychology. W.W. Norton &
Company, New York.

[14] Goldblatt, R. (1992). Logics of Time and Computation,
2nd edition, CSLI Lecture Notes 7.

[15] Kim, J. (1996). Philosophy of Mind. Westview Press.

[16] Kowalski, R., and Sergot, M. (1986). A logic-based
calculus of events, New Generation Computing, 4: 67-95.

[17] Los, S.A. and Heuvel, C.E, van den. (2001). Intentional
and Unintentional Contributions to Nonspecific Preparation
During Reaction Time Foreperiods. Journal of Experimental
Psychology: Human Perception and Performance, vol. 27, pp.
370-386.

[18] Machado, A. (1997). Learning the Temporal Dynamics of
Behaviour. Psychological Review, vol. 104, pp. 241-265.

[19] Manna, Z., and Pnueli, A. (1995). Temporal Verification
of Reactive Systems: Safety. Springer Verlag.

[20] Pearson, C.E. (1986). Numerical Methods in Engineering
and Science. CRC Press.

[21] Port, R.F., Gelder, T. van (eds.) (1995). Mind as Motion:
Explorations in the Dynamics of Cognition. MIT Press,
Cambridge, Mass.

[22] Reiter, R. (2001). Knowledge in Action: Logical
Foundations for Specifying and Implementing Dynamical
Systems, Cambridge MA: MIT Press.

[23] Sharpanskykh, A. and Treur, J. (2005). Verifying
Interlevel Relations within Multi-Agent Systems: Formal
Theoretical Basis, Technical Report TR-1701AI. VU
Amsterdam, 2005. http://hdl.handle.net/1871/9777

[24] Stirling, C. (2001). Modal and Temporal Properties of
Processes. Springer Verlag.

[25] Wolper, P. (1983). Temporal logic can be more
expressive. Information and Control, vol. 56(1-2), pp. 72-99.

Proceedings of the IEEE/WIC/ACM International
Conference on Intelligent Agent Technology (IAT'06)
0-7695-2748-5/06 $20.00 © 2006

